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Proving Information Inequalities and Identities
with Symbolic Computation

Laigang Guo, Member, IEEE, Raymond W. Yeung, Fellow, IEEE, and Xiao-Shan Gao, Senior Member, IEEE

Abstract—Proving linear inequalities and identities of Shan-
non’s information measures, possibly with linear constraints
on the information measures, is an important problem in
information theory. For this purpose, ITIP and other variant
algorithms have been developed and implemented, which are
all based on solving a linear program (LP). In particular, an
identity f = 0 is verified by solving two LPs, one for f ≥ 0 and
one for f ≤ 0. In this paper, we develop a set of algorithms
that can be implemented by symbolic computation. Based on
these algorithms, procedures for verifying linear information
inequalities and identities are devised. Compared with LP-
based algorithms, our procedures can produce analytical proofs
that are both human-verifiable and free of numerical errors.
Our procedures are also more efficient computationally. For
constrained inequalities, by taking advantage of the algebraic
structure of the problem, the size of the LP that needs to be
solved can be significantly reduced. For identities, instead of
solving two LPs, the identity can be verified directly with very
little computation.

Index Terms—Entropy, mutual information, information in-
equality, information identity, machine proving, ITIP.

I. INTRODUCTION

In information theory, we may need to prove various
information inequalities and identities that involve Shannon’s
information measures. For example, such information in-
equalities and identities play a crucial role in establishing
the converse of most coding theorems. However, proving an
information inequality or identity involving more than a few
random variables can be highly non-trivial.

To tackle this problem, a framework for linear information
inequalities was introduced in [1]. Based on this framework,
the problem of verifying Shannon-type inequalities can
be formulated as a linear program (LP), and a software
package based on MATLAB called Information Theoretic
Inequality Prover (ITIP) was developed [3]. Subsequently,
different variations of ITIP have been developed. Instead
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of MATLAB, Xitip [4] uses a C-based linear programming
solver, and it has been further developed into its web-based
version, oXitip [7]. minitip [5] is a C-based version of
ITIP that adopts a simplified syntax and has a user-friendly
syntax checker. psitip [6] is a Python library that can verify
unconstrained/constrained/existential entropy inequalities. It
is a computer algebra system where random variables,
expressions, and regions are objects that can be manipulated.
AITIP [8] is a cloud-based platform that not only provides
analytical proofs for Shannon-type inequalities but also give
hints on constructing a smallest counterexample in case the
inequality to be verified is not a Shannon-type inequality.

Using the above LP-based approach, to prove an infor-
mation identity f = 0, two LPs need to be solved, one for
the inequality f ≥ 0 and the other for the inequality f ≤ 0.
Roughly speaking, the amount of computation for proving
an information identity is twice the amount for proving an
information inequality. If the underlying random variables
exhibit certain Markov or functional dependence structures,
there exist more efficient approaches to proving information
identities [10][12].

The LP-based approach is in general not computationally
efficient because it does not take advantage of the special
structure of the underlying LP. In this paper, we take a
different approach. Instead of transforming the problem into
a general LP to be solved numerically, we develop algo-
rithms that can be implemented by symbolic computation,
and based on these algorithms, procedures for proving infor-
mation inequalities and identities are devised. Our specific
contributions are:

1) Analytical proofs for information inequalities and
identities that are free of numerical errors can be
produced.

2) Compared with the LP-based approach, the computa-
tional efficiency of our procedure is in general much
higher.

3) Information identities can be proved directly with very
little computation instead of having to solve 2 LPs.

The rest of the paper is organized as follows. In Section II,
we present the preliminaries for information inequalities. In
Section III, we develop algorithms for simplifying a set of
linear inequalities subject to linear inequality and equal-
ity constraints. In Section IV, the procedures for proving
information inequalities and identities are presented. Two
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examples and an application are given in Sections V and
VI respectively, to illustrate our procedures. Section VII
concludes the paper.

II. INFORMATION INEQUALITY PRELIMINARIES

In this section, we present some basic results related to
information inequalities and their verification. For a compre-
hensive discussion on the topic, we refer the reader to [2],
[9, Chs. 13-15].

It is well known that all Shannon’s information measures,
namely entropy, conditional entropy, mutual information,
and conditional mutual information are always nonnegative.
The nonnegativity of all Shannon’s information measures
forms a set of inequalities called the basic inequalities. The
set of basic inequalities, however, is not minimal in the sense
that some basic inequalities are implied by the others. For
example,

H(X|Y ) ≥ 0 and I(X;Y ) ≥ 0,

which are both basic equalities involving random variables
X and Y , imply

H(X) = H(X|Y ) + I(X;Y ) ≥ 0,

again a basic equality involving X and Y . In order to
eliminate such redundancies, the minimal subset of the basic
inequalities was found in [1].

Throughout this paper, all random variables are discrete.
Unless otherwise specified, all information expressions in-
volve some or all of the random variables X1, X2, . . . , Xn.
The value of n will be specified when necessary. Denote the
set {1, 2, . . . , n} by Nn and the set {1, 2, . . .} by N>0.

Theorem II.1. [1] Any Shannon’s information measure can
be expressed as a conic combination of the following two
elemental forms of Shannon’s information measures:

i) H(Xi|XNn−{i})
ii) I(Xi;Xj |XK), where i ̸= j and K ⊆ Nn − {i, j}.

The nonnegativity of the two elemental forms of Shan-
non’s information measures forms a proper subset of the set
of basic inequalities. The inequalities in this smaller set are
called the elemental inequalities. In [1], the minimality of
the elemental inequalities is also proved. The total number
of elemental inequalities is equal to

m = n+

n−2∑
r=0

(
n
r

)(
n− r
2

)
= n+

(
n
2

)
2n−2.

In this paper, inequalities (identities) involving only Shan-
non’s information measures are referred to as informa-
tion inequalities (identities). The elemental inequalities are
called unconstrained information inequalities because they
hold for all joint distributions of the random variables. In
information theory, we very often deal with information
inequalities (identities) that hold under certain constraints

on the joint distribution of the random variables. These are
called constrained information inequalities (identities), and
the associated constraints are usually expressible as linear
constraints on the Shannon’s information measures. We will
confine our discussion to constrained inequalities of this
type.

Example II.1. The celebrated data processing theorem
asserts that for any four random variables X , Y , Z and
T , if X → Y → Z → T forms a Markov chain,
then I(X;T ) ≤ I(Y ;Z). Here, I(X;T ) ≤ I(Y ;Z) is
a constrained information inequality under the constraint
X → Y → Z → T , which is equivalent to{

I(X;Z|Y ) = 0
I(X,Y ;T |Z) = 0,

or
I(X;Z|Y ) + I(X,Y ;T |Z) = 0

owing to the nonnegativity of conditional mutual informa-
tion. Either way, the Markov chain can be expressed a set of
linear constraint(s) on the Shannon’s information measures.

Information inequalities (unconstrained or constrained)
that are implied by the basic inequalities are called Shannon-
type inequalities. Most of the information inequalities that
are known belong to this type. However, non-Shannon-
type inequalities do exist, e.g., [11]. See [9, Ch. 15] for a
discussion.

Shannon’s information measures, with conditional mutual
informations being the general form, can be expressed as a
linear combination of joint entropies by means of following
identity:

I(XG;XG′ |XG′′) = H(XG, XG′′) +H(XG′,G′′)

−H(XG, XG′ , XG′′)−H(XG′′).

where G,G′, G′′ ⊆ Nn. For the random variables
X1, X2, . . . , Xn, there are a total of 2n − 1 joint entropies.
By regarding the joint entropies as variables, the basic
(elemental) inequalities become linear inequality constraints
in R2n−1. By the same token, the linear equality constraints
on Shannon’s information measures imposed by the prob-
lem under discussion become linear equality constraints
in R2n−1. This way, the problem of verifying a (linear)
Shannon-type inequality can be formulated as a linear pro-
gram (LP), which is described next.

Let h be the column (2n−1)-vector of the joint entropies
of X1, X2, . . . , Xn. The set of elemental inequalities can
be written as Gh ≥ 0, where G is an m × (2n − 1)
matrix and Gh ≥ 0 means all the components of Gh are
nonnegative. Likewise, the constraints on the joint entropies
can be written as Qh = 0. When there is no constraint
on the joint entropies, Q is assumed to have zero row. The
following theorem enables a Shannon-type inequality to be
verified by solving an LP.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3263178

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Beijing Normal University. Downloaded on March 30,2023 at 07:50:05 UTC from IEEE Xplore.  Restrictions apply. 



3

Theorem II.2. [1] b⊤h ≥ 0 is a Shannon-type inequality
under the constraint Qh = 0 if and only if the minimum of
the problem

Minimize b⊤h, subject to Gh ≥ 0 and Qh = 0

is zero. Here, h ∈ R2n−1 is the variable vector.

III. LINEAR INEQUALITIES AND RELATED ALGORITHMS

In this section, we will develop some algorithms for
simplifying a linear inequality set constrained by a linear
equality set. These algorithms will be used as building blocks
for the procedures to be developed in Section IV for proving
information inequalities and identities.

We will start by discussing some notions pertaining to
linear inequality sets and linear equality sets. Then we will
establish some related properties that are instrumental for
developing the aforementioned algorithms. For some details,
one can refer to [23], [26].

Let x = (x1, x2, . . . , xn)
T , and let Rh[x] be the set of all

homogeneous linear polynomials in x with real coefficients.
In this paper, unless otherwise specified, we assume that all
inequality sets have the form Sf = {fi ≥ 0, i ∈ Nm}, with
fi ̸= 0 and fi ∈ Rh[x], and all the equality sets have the
form Ef̃ = {f̃i = 0, i ∈ Nm̃} with f̃i ̸= 0 and f̃i ∈ Rh[x].

For a given set of polynomials Pf = {fi, i ∈ Nm} and the
corresponding set of inequalities Sf = {fi ≥ 0, i ∈ Nm},
and a given set of polynomials Pf̃ = {f̃i, i ∈ Nm̃} and
the corresponding set of equalities Ef̃ = {f̃i = 0, i ∈ Nm̃},
where fi and f̃i are polynomials in x, we write Sf = R(Pf ),
Pf = R−1(Sf ), Ef̃ = R̃(Pf̃ ) and Pf̃ = R̃−1(Ef̃ ).

Definition III.1. Let Sf = {fi ≥ 0, i ∈ Nm} and
Sf ′ = {f ′

i ≥ 0, i ∈ Nm′} be two inequality sets, and
Ef̃ and Ef̃ ′ be two equality sets. We write Sf ′ ⊆ Sf if
R−1(Sf ′) ⊆ R−1(Sf ), and Ef̃ ′ ⊆ Ef̃ if R̃−1(Ef̃ ′) ⊆
R̃−1(Ef̃ ). Furthermore, we write (fi ≥ 0) ∈ Sf to mean
that the inequality fi ≥ 0 is included in Sf .

Definition III.2. Let R>0 and R≥0 be the sets of posi-
tive and nonnegative real numbers, respectively. A linear
polynomial F in x is called a positive (nonnegative) linear
combination of polynomials fj in x, j = 1, . . . ,m, if
F =

∑m
j=1 rjfj with rj ∈ R>0 (rj ∈ R≥0). A nonnegative

linear combination is also called a conic combination.

Definition III.3. The inequalities f1 ≥ 0, f2 ≥ 0, . . . , fm ≥
0 imply the inequality f ≥ 0 if the following holds:

x satisfying f1 ≥ 0, f2 ≥ 0, . . . , fm ≥ 0 implies x satisfies
f ≥ 0 for all x.

Definition III.4. Given a set of inequalities Sf = {fi ≥
0, i ∈ Nm}, for some i ∈ Nm, fi ≥ 0 is called a redundant
inequality if fi ≥ 0 is implied by the inequalities fj ≥ 0,
where j ∈ Nm and j ̸= i.

Definition III.5. Two inequalities f ≥ 0 and g ≥ 0 are
trivially equivalent if f = c g for some c ∈ R>0. Given two
sets of inequalities Sf = {fi ≥ 0, i ∈ Nm1} and Sg =
{gi ≥ 0, i ∈ Nm2}, we say that Sf and Sg are trivially
equivalent if

1) Sf and Sg have exactly the same number of inequal-
ities;

2) for every i ∈ Nm1
, fi ≥ 0 is trivially equivalent to

gj ≥ 0 for some j ∈ Nm2
;

3) for every i ∈ Nm2 , gi ≥ 0 is trivially equivalent to
fj ≥ 0 for some j ∈ Nm1 .

Furthermore, if Sf and Sg are trivially equivalent, then we
regard Sf and Sg as the same set of inequalities.

Lemma III.1 (Farkas’ Lemma[13], [14]). Let A ∈ Rm×n

and b ∈ Rn. Then exactly one the following two assertions
is true:

1. There exists an x ∈ Rn such that Ax ≥ 0 and
bTx < 0.

2. There exists a y ∈ Rm such that ATy = b and y ≥ 0.

Lemma III.2 ([26]). Given h1, . . . , hm, h0 ∈ Rh[x], h1 ≥
0, ..., hm ≥ 0 imply h0 ≥ 0 if and only if h0 is a conic
combination of h1, . . . , hm.

Note that this lemma generalizes Theorem 2 in [1].

Definition III.6. Let f(x) and g(x) be two homogeneous
linear polynomials. We say f(x) ≡ g(x) if and ony if f(x) =
g(x) for any x ∈ Rn.

Definition III.7. Let Sf = {fi(x) ≥ 0, i ∈ Nm} be an
inequality set. If fk(x) = 0 for all solutions x of Sf , then
fk(x) = 0 is called an implied equality of Sf . The inequality
set Sf is called a pure inequality set if Sf has no implied
equalities.

Lemma III.3. Let Sf = {fi(x) ≥ 0, i ∈ Nm} be an
inequality set. Then fk = 0 is an implied equality of Sf

if and only if

fk(x) ≡
m∑

i=1,i̸=k

pifi(x), (1)

where pi ≤ 0 for all i ∈ Nm\{k}.

Proof. Assume (1) holds and let x be any solution of Sf .

Then fk(x) =
m∑

i=1,i̸=k

pifi(x) ≤ 0 since pi ≤ 0 and fi(x) ≥

0, for i ∈ Nm\{k}. On the other hand, from fk(x) ≥ 0, we
obtain fk(x) = 0. Therefore, fk(x) = 0 for all solution x
of Sf , i.e., fk = 0 is an implied equality of Sf .

Now, assume that fk = 0 is an implied equality of Sf ,
i.e., fk(x) = 0 for all solution x of Sf . This implies that if
x is a solution of Sf , then fk(x) ≤ 0. In other words, the
inequality fk(x) ≤ 0 is implied by the Sf . By Lemma III.2,
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there exist qi ≥ 0, i ∈ Nm such that

−fk(x) ≡
m∑
i=1

qifi(x).

Then,

(−1− qk)fk(x) ≡
m∑

i=1,i̸=k

qifi(x),

or

fk(x) ≡
m∑

i=1,i̸=k

(
− qi
1 + qk

)
fi(x).

Upon letting pi = − qi
1+qk

, where pi ≤ 0 since qi ≥ 0, we
obtain (1). This completes the proof.

Let Ef̄ be the set of all implied equalities of Sf . Evidently,
R̃−1(Ef̄ ) ⊆ R−1(Sf ). Next, we give an example to show
that if an equality set is imposed, a pure inequality set can
become a non-pure inequality set.

Example III.1. Let Sf = {f1 ≥ 0, f2 ≥ 0}, where f1 =
x1 + x2, f2 = x1 − x2. Evidently, Sf is a pure inequality
set. However, if we impose the constraint x1 = 0, then Sf

becomes {x2 ≥ 0,−x2 ≥ 0}, which is a non-pure inequality
set.

Proposition III.1. A subset of a pure inequality set is a pure
inequality set.

Proof. The proposition follows immediately from
Lemma III.3 and Definition III.7.

Definition III.8. Let Sf = {fi ≥ 0, i ∈ Nm} and Sf ′ =
{f ′

i ≥ 0, i ∈ Nm′} be two inequality sets. If the solution
sets of Sf ′ and Sf are the same, then we say that Sf and
Sf ′ are equivalent.

Proposition III.2. If Sf and Sf ′ are equivalent, then every
inequality in Sf is implied by Sf ′ , and every inequality in
Sf ′ is implied by Sf .

In the rest of the section, we will develop a few algorithms
for simplifying a linear inequality set constrained by a linear
equality set.

A. Dimension Reduction of a set of inequalities by an
equality set

Let Sf = {fi ≥ 0, i ∈ Nm} be an inequality set and
Ef̃ = {f̃i = 0, i ∈ Nm̃} be an equality set. Recall that
Pf = R−1(Sf ) = {fi, i ∈ Nm} and Pf̃ = R̃−1(Ef̃ ) =

{f̃i, i ∈ Nm̃}. The following proposition is well known (see
for example [15, Chapter 1]).

Proposition III.3. Under the variable order x1 ≺ x2 ≺
· · · ≺ xn, the linear equation system Ef̃ can be reduced by
Gauss-Jordan elimination to the unique form

Ẽ = {xki − Ui = 0, i ∈ Nñ}, (2)

where k1 < k2 < · · · < kñ, xki
is the leading term of

xki
− Ui, ñ is rank of the linear system Ef̃ and Ui is a

linear function in {xj , for ki < j ≤ n, j ̸= kl, i <
l ≤ ñ}, with ki+1 = n + 1 by convention. Furthermore,∑

i∈Nñ
|Ui| = n− ñ.1

Among the variables x1, x2, . . . , xn, xki , i ∈ Nñ are
called the prior variables, and the rest are called the free
variables.

Algorithm 1 Dimension Reduction
Input: Sf , Ef̃ .
Output: The remainder set Rf .
1: Compute Ẽ with Ef̃ by Proposition III.3.
2: Substitute xki

by Ui in Pf to obtain a set R.
3: Let Rf = R\{0}.
4: return R(Rf ).

We call the equality set Ẽ the reduced row echelon form
of Ef̃ . Likewise, we call the polynomial set R̃−1(Ẽ) the
reduced row echelon form of R̃−1(Ef̃ ). We say reducing
Sf by Ef̃ to mean using Algorithm 1 to find R(Rf ). We
also say reducing Pf by Ef̃ to mean using Algorithm 1 to
find Rf , called the remainder set (or remainder if Rf is a
singleton).

Example III.2. Given a variable order x1 ≺ x2 ≺ x3, let
Sf = {f1 ≥ 0, f2 ≥ 0} and Ef̃ = {f̃1 = 0, f̃2 = 0, f̃3 =

0}, where f1 = x1+x2−x3, f2 = x2+x3, f̃1 = x1+x2+x3,
f̃2 = x1 + x2, and f̃3 = x3. We write Pf = R−1(Sf ) =

{f1, f2} and Pf̃ = R̃−1(Ef̃ ) = {f̃1, f̃2, f̃3}.
Firstly, we obtain that the rank of Ef̃ is ñ = 2. Then the

reduced row echelon form of Ef̃ is given by Ẽ = {xk1
−

U1 = 0, xk2
− U2 = 0}, where k1 = 1, k2 = 3, U1 = −x2,

U2 = 0.
Using the equality constraints in Ẽ, we substitute x1 =

−x2 and x3 = 0 into Pf = {f1, f2} to obtain R = {0, x2}.
Hence Rf = R\{0} = {x2}. In other words, the inequality
set Sf is reduced to R(Rf ) = {x2 ≥ 0} by the equality set
Ef̃ . Note that in R(Rf ), only n − ñ = 1 variable, namely
x2, appears.

Remark III.1. After the execution of Algorithm 1, the
inequality set Sf constrained by the equality set Ef̃ is
reduced to the inequality set R(Rf ) constrained by the
equality set Ẽ. Therefore, the solution set of ‘Sf constrained
by Ef̃ ’ in Rn is the same as the solution set of ‘R(Rf )

constrained by Ẽ’ in Rn.

B. The implied equalities contained in a system of inequal-
ities

In this subsection, we will show how to find all the implied
equalities contained in a system of linear inequalities.

1We use |Ui| to mean the number of variables of the polynomial Ui.
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Firstly, we let x = (x1, x2, . . . , xn)
T , f ∈ Rh[x] and

gi ∈ Rh[x], i = 1, . . . ,m, and give an algorithm to check
whether f is a conic combination of {gi, i = 1, . . . ,m}.

Algorithm 2 Conic Combination Discrimination Algorithm
Input: f , gi, i = 1, . . . ,m.
Output: The argument “f is a conic combination of gi,

i = 1, . . . ,m” is TRUE or FALSE.
1: Let F = f −

∑m
i=1 pigi, where P = {pi, i ∈ Nm} is a

set of variables. Set F ≡
∑n

j=1 qjxj ≡ 0. Then
Q = {qj = 0, j ∈ Nn} is a linear system in P .

2: if the linear system Q has no solution then
3: Declare the argument is ‘FALSE’ and terminate the

algorithm.
4: else
5: Solve the linear equations {qj = 0, j ∈ Nn} by

Gauss-Jordan elmination to obtain the solution set of
pi in the form {pi = Pi, i ∈ Nm}, where Pi is a
linear function in m− d variables of P and d is the
rank of the linear system Q.

6: if Pi ∈ R<0 (i.e. Pi is a negative real number) for
some i ∈ Nm then

7: Declare the argument is ‘FALSE’ and terminate the
algorithm.

8: else
9: Let SP be the set {Pi, i ∈ Nm}, and let S̄P =

SP \R. Write S̄P = {P̄i, i ∈ Nm1
}.

10: if S̄P is empty then
11: Declare the argument is ‘TRUE’ and terminate

the algorithm.
12: else
13: Solve Problem P3:

min(0)
s.t. P̄i ≥ 0, i = 1, . . . ,m1.

14: if the above LP has a solution then
15: Declare the argument is ‘TRUE’.
16: else
17: Declare that the argument is ‘FALSE’.
18: end if
19: end if
20: end if
21: end if
22: return The argument “f is a conic combination of gi,

i = 1, . . . ,m” is ‘TRUE’ or ‘FALSE’.

Next, let Sf = {fi ≥ 0, i ∈ Nm} be a given inequality
set, where fi is a linear function in x. Based on Lemma
III.3, we give the following algorithm, called the Implied
Equalities Algorithm that can find all the implied equalities
of Sf .

Algorithm 3 Implied Equalities Algorithm
Input: Sf .
Output: The implied equalities of Sf .
1: for k from 1 to m do
2: Determine whether −fk is a conic combination of

{fi, i ∈ Nm, i ̸= k} by Algorithm 2.
3: if Algorithm 2 outputs ‘TRUE’ then
4: Declare that the equality fk = 0 is an implied

equality of Sf .
5: end if
6: end for
7: return All implied equalities fk = 0 of Sf .

With Algorithm 3, we can obtain the set of implied
equalities of Sf , denoted by Ef̄ .

Theorem III.1. For any g ∈ Rh[x]\{0}, the inequality set
Sf implies g(x) = 0 if and only if Ef̄ is nonempty (i.e., Sf

is not a pure inequality set) and g(x) is a linear combination
of the polynomials in R̃−1(Ef̄ ).

Proof. “Only if” part:
Sf implies g(x) = 0 means Sf implies g(x) ≥ 0 and

−g(x) ≥ 0. By Lemma III.2, we have

g = p1f1 + · · ·+ pmfm, (3)
−g = q1f1 + · · ·+ qmfm, (4)

where pi ≥ 0 and qi ≥ 0 for i ∈ Nm. Then we obtain

(p1 + q1)f1 + · · ·+ (pm + qm)fm = 0. (5)

Since pi+ qi ≥ 0 for i ∈ Nm, we have the following two
cases:

Case 1. pi + qi = 0. For this case, pi = qi = 0, which
implies g ≡ 0, contradicting that g ∈ Rh(x)\{0}.

Case 2. pi + qi > 0. By (5), we see that −fi is a
conic combination of fj , j ∈ Nm\{i}, which implies
fi ∈ R̃−1(Ef̄ ).

Let α = {i ∈ Nm : pi+qi > 0}. Note that α ̸= ∅ because
otherwise g ≡ 0. This also implies R̃−1(Ef̄ ) is nonempty.
Then following (3), g =

∑
i∈α

pifi, where fi ∈ R̃−1(Ef̄ ).

Thus, g is a linear combination of the polynomials in
R̃−1(Ef̄ ).

“If” part:
If g(x) is a linear combination of R̃−1(Ef̄ ), then Ef̄

implies g(x) = 0. By Definition III.7, Sf implies Ef̄ . Hence,
Sf implies g(x) = 0.

The following example illustrates how we can apply Al-
gorithm 3 and then Algorithm 1 to reduce a given inequality
set.

Example III.3. Fix the variable order x1 ≺ x2 ≺ x3. Let
Sf = {f1 ≥ 0, f2 ≥ 0, f3 ≥ 0, f4 ≥ 0, f5 ≥ 0}, where f1 =
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x1, f2 = x2−x1, f3 = −x1, f4 = −x2 and f5 = x2+x3.
An application of Algorithm 3 to Sf yields the following:

We need to take turns to verify whether fi = 0, i ∈ N5 is
an implied equality. Next, we take f1 as an example.

• Firstly, we let F = −f1 −
∑4

i=1 pifi+1 =
∑3

j=1 qjxj .
Then we have P = {p1, p2, p3, p4} and Q = {q1 =
0, q2 = 0, q3 = 0} with q1 = p1 + p2 − 1, q2 = p3 −
p4 − p1 and q3 = −p4.

• The rank of Q is d = 3. We then solve the linear
equations Q by Gauss-Jordon elimination to obtain
{pi = Pi, i ∈ N4}, where P1 = p3, P2 = −p3 + 1,
P3 = p3 and P4 = 0, from which we can see that Pi’s
are linear functions of the variable p3.

• S̄P = {P̄1, P̄2, P̄3}, where P̄1 = p3, P̄2 = −p3 + 1,
P̄3 = p3.

• Finally, we have the following linear programming
problem:
L1 : min(0) s.t. p3 ≥ 0, −p3 + 1 ≥ 0.

• We prove L1 has a solution.
We repeat the above steps for f2, f3, f4 and f5, respectively.
Thus, we obtain the implied equality set, denoted by Ef̄ =
{f̄1 = 0, f̄2 = 0, f̄3 = 0, f̄4 = 0}, where f̄1 = x1, f̄2 =
x2 − x1, f̄3 = −x1 and f̄4 = −x2.

Upon applying Algorithm 3, the inequality set Sf is re-
duced to the inequality set S′

f = {f5 ≥ 0} = {x2+x3 ≥ 0}
constrained by the equality set Ef̄ . Finally, apply Algo-
rithm 1 with S′

f and Ef̄ as inputs to obtain Rf = {x3}. In
other words, the inequality set Sf is reduced to {x3 ≥ 0}
constrained by the equality set Ef̄ after the applications of
Algorithm 3 and then Algorithm 1.

Remark III.2. Note that finding all implied equalities given
a system of inequalities is still not straightforward. This
remains a bottleneck for solving large problems. Depending
on the size of the problem, employing Algorithm 3 to find all
implied equalities may not be practical. Hence, finding all
or some implied equalities by studying the structure of the
system of inequalities (e.g., as in [12], [17], [25]) remains
an important approach that can potentially enable more
efficient computation using the results of this paper.

C. Minimal characterization set
In this subsection, we first define a minimal characteriza-

tion set of an inequality set and prove its uniqueness. Then
we present an algorithm to obtain this set.

Definition III.9. Let Sg = {gi ≥ 0, i ∈ Nm} be an
inequality set and Sg′ = {g′i ≥ 0, i ∈ Nm′} be a subset
of Sg . If

1) Sg and Sg′ are equivalent, and
2) there is no redundant inequalities in Sg′ ,

we say that Sg′ is a minimal characterization set of Sg .

Proposition III.4. Let Sg = {gi ≥ 0, i ∈ Nm} be an
inequality set. If Sg′ = {g′i ≥ 0, i ∈ Nm′} is a minimal
characterization set of Sg , then m′ ≤ m and 0 /∈ R−1(Sg′).

Proof. Since Sg′ ⊆ Sg by Definition III.9, we have m′ ≤ m.
In addition, if 0 ∈ R−1(Sg′), then 0 ≥ 0 is a redundant
inequality in Sg′ , which contradicts that Sg′ is a minimal
characterization set of Sg . Thus, 0 /∈ R−1(Sg′).

The following corollary is immediate from Definition III.9
and Proposition III.1.

Corollary III.1. A minimal characterization set of a pure
inequality set is also a pure inequality set.

Theorem III.2. Let h1, . . . , hm ∈ Rh[x] and Sh = {hi ≥
0, i ∈ Nm} be a pure inequality set. Then the minimal
characterization set of Sh is unique.

Proof. Consider two minimal characterization sets of a pure
set of linear inequalities Sh, denoted by Sh′ = {h′

i ≥ 0, i ∈
Nm1} and Sh̄ = {h̄i ≥ 0, i ∈ Nm2

}. By Definition III.9,
Sh′ and Sh̄ are equivalent, and by Corollary III.1, they are
both pure inequality sets. We will prove by contradiction
that Sh′ and Sh̄ are trivially equivalent.

Assume that for some inequality (h′
j ≥ 0) ∈ Sh′ , we

cannot find (h̄i ≥ 0) ∈ Sh̄ that is trivially equivalent to
h′
j ≥ 0. By Proposition III.2 and Lemma III.2, we have

h′
j ≡

m2∑
i=1

pih̄i,

with pi ≥ 0. Without loss of generality, assume that pi > 0
for i = 1, . . . , m̄2 and pi = 0 for i = m̄2+1, . . . ,m2, where
2 ≤ m̄2 ≤ m2. Again by Lemma III.2, for all i ∈ Nm2

,

h̄i ≡
m1∑
k=1

qi,kh
′
k, (6)

where qi,k ≥ 0. Then

h′
j ≡

m̄2∑
i=1

pih̄i ≡
m̄2∑
i=1

pi

m1∑
k=1

qi,kh
′
k. (7)

Rewrite (7) as(
1−

m̄2∑
i=1

piqi,j

)
h′
j(x) ≡

m̄2∑
i=1

pi
∑

k∈Nm1
\{j}

qi,kh
′
k(x). (8)

By collecting the coefficients of h′
k(x) on the RHS, we have(

1−
m̄2∑
i=1

piqi,j

)
h′
j(x) ≡

∑
k∈Nm1\{j}

akh
′
k(x). (9)

where

ak =

m̄2∑
i=1

piqi,k. (10)

Now in (6), for a fixed i ∈ Nm2 , if qi,k = 0 holds for all
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k = 1, . . . ,m1 such that k ̸= j, then we have

h̄i ≡
m1∑
k=1

qi,kh
′
k ≡ qi,jh

′
j . (11)

If qi,j > 0, then h̄i and h′
j are trivially equivalent, contra-

dicting our assumption that there exists no h̄i ∈ Sh̄ which is
trivially equivalent to h′

j . On the other hand, if qi,j = 0,
then h̄i ≡ 0, which by Proposition III.4 contradicts the
assumption that Sh̄ is a minimal characterization set of Sh.
Thus we conclude that for every i ∈ Nm1 , there exists at
least one k ∈ Nm1\{j} such that qi,k > 0. From this and
(10), it is not difficult to see that on the RHS of (9), there
exists at least one k ∈ Nm1

\{j} such that ak > 0.
Consider a solution x∗ of Sh′ such that h′

k(x
∗) > 0 for all

k ∈ Nm1 . Such an x∗ exists because Sh′ is a pure inequality
set. Substituting x = x∗ in (9) to yield(

1−
m̄2∑
i=1

piqi,j

)
h′
j(x

∗) =
∑

k∈Nm1\{j}

akh
′
k(x

∗). (12)

Since there exists at least one k ∈ Nm1
\{j} such that

ak > 0, the RHS above is strictly positive, which implies

that 1 −
m̄2∑
i=1

piqi,j > 0. It then follows that h′
j can be

written as a conic combination of h′
k, k ∈ Nm1

\{j}. In
other words, h′

j ≥ 0 is implied by h′
k ≥ 0, k ∈ Nm1

\{j}.
This contradicts that Sh′ is a minimal characterization set of
Sh.

Summarizing the above, we have proved that for every
(h′

j ≥ 0) ∈ Sh′ , we can find an (h̄i ≥ 0) ∈ Sh̄ which
is trivially equivalent to h′

j ≥ 0. Moreover, h̄i is unique,
which can be seen as follows. If there exists another (h̄i′ ≥
0) ∈ Sh̄ which is trivially equivalent to h′

j ≥ 0, then h̄i ≥
0 and h̄i′ ≥ 0 are also trivially equivalent to each other,
contradicting that Sh′ is a minimal characterization set of
Sh. In the same way, we can prove that for every (h̄i ≥
0) ∈ Sh̄, we can find a unique (h′

j ≥ 0) ∈ Sh′ which is
trivially equivalent to h̄i ≥ 0. Thus, Sh′ and Sh̄ are trivially
equivalent and have exactly the same number of inequalities,
which means that the minimal characterization set of a pure
inequality set Sh is unique. This completes the proof of the
theorem.

Theorem III.3. Let Sf = {fi ≥ 0, i ∈ Nm1
} and Sg =

{gi, i ∈ Nm2
} be two pure inequality sets, and Sf ′ and Sg′

be their minimal characterization sets respectively. If Sf and
Sg are equivalent, then Sf ′ and Sg′ are trivially equivalent.

Proof. If the two pure inequality sets Sf and Sg are equiv-
alent, then Sf ′ and Sg′ are pure and equivalent. Thus the
theorem follows immediately from the proof of Theorem
III.2.

Next, we give an example to show that the minimal
characterization set of a non-pure inequality set may not

be unique.

Example III.4. Let Sf = {f1 ≥ 0, f2 ≥ 0, f3 ≥ 0, f4 ≥
0, } be an inequality set, where f1 = x1 − x2, f2 = x2,
f3 = −x2, f4 = x1. Evidently, Sf is a non-pure inequality
set, and it can readily be seen that both Sf ′ = {f1 ≥ 0, f2 ≥
0, f3 ≥ 0} and Sf ′′ = {f2 ≥ 0, f3 ≥ 0, f4 ≥ 0} are minimal
characterization sets of Sf . However, Sf ′ and Sf ′′ are not
trivially equivalent. Thus, the minimal characterization set
of Sf isn’t unique.

Let Sh = {hi ≥ 0, i ∈ Nm} be an inequality set, where
hi ∈ Rh[x]. Based on Lemma III.2, the following algorithm,
called Minimal Characterization Set Algorithm, can be used
to obtain a minimal characterization set of Sh.

Algorithm 4 Minimal Characterization Set Algorithm
Input: Sh.
Output: A minimal characterization set of Sh.
1: Set Ph := R−1(Sh).
2: for k from 1 to m do
3: Determine whether hk is a conic combination of

Ph\{hk} by Algorithm 2.
4: if Algorithm 2 outputs ‘TRUE’ then
5: Ph := Ph\{hk}.
6: end if
7: end for
8: return R(Ph).

Justification for Algorithm 4. Steps 2 to 5 remove the
polynomial hk from Ph if it can be expressed as a conic
combination of hi, i ∈ M\{k}. Iterating over all k from
1 to m, the output inequality set R(Ph) is equivalent to
Sh and it is a pure inequality set. Hence, it is a minimal
characterization set of Sh.

D. The reduced minimal characterization set
In this subsection, we first define the reduced minimal

characterization set of a linear inequality set and prove its
uniqueness. Then we present an algorithm to obtain this set.

Let Sf = {fi ≥ 0, i ∈ Nm} be a linear inequality set,
and Ef̄ be the set of implied equalities of Sf obtained by
applying Algorithm 3. Then we obtain Ẽ, the reduced row
echelon form of Ef̄ , as in Proposition III.3. Let Rf be the
remainder set obtained by reducing R−1(Sf )\R−1(Ef̄ ) by
R̃−1(Ẽ) using Algorithm 1.

Theorem III.4. The set R(Rf ) is a pure inequality set.

Proof. Let Ẽ = {Ei = 0, i ∈ Nñ}, and assume there is
an implied equality (f̄ = 0) ∈ R(Rf ). In the process of
obtaining f̄ , we substitute xki

= Ui, i ∈ Ññ into some
polynomial f ∈ R−1(Sf ) (cf. equation (2)). Therefore, we
can write

f̄ ≡ f −
ñ∑

i=1

ciEi, (13)
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where ci is the coefficient of xki
in f . Let x∗ be a solution

of Sf . From Remark III.1, we see that x∗ is also a solution
of R(Rf ) constrained by Ẽ, so that Ei(x

∗) = 0 for all
i ∈ Nñ. From (13), we have

f(x∗) = f̄(x∗)−
ñ∑

i=1

ciEi(x
∗).

Since f̄ = 0 is an implied equality of Sf , we have f̄(x∗) =
0. It follows from the above that f(x∗) = 0. Since this holds
for all solution x∗ of Sf , we see that f = 0 is an implied
equality of Sf , i.e., (f = 0) ∈ Ef̄ , which is a contradiction
to f ∈ R−1(Sf )\R−1(Ef̄ ). The theorem is proved.

Since R(Rf ) is a pure inequality set, the minimal charac-
terization set of R(Rf ) is unique. We let Sr′ be the minimal
characterization set of R(Rf ).

Definition III.10. The set SM = Ẽ ∪ Sr′ is called the
reduced minimal characterization set of Sf .

Theorem III.5. The reduced minimal characterization set
of Sf is unique.

Proof. Fix the variable order x1 ≺ x2 ≺ · · · ≺ xn. By
Proposition III.3, the reduced standard basis R̃−1(Ẽ) is
unique, which yields that the remainder set Rf is unique.
Since R(Rf ) is a pure inequality set by Theorem III.2, the
minimal characterization set of R(Rf ) is unique. Hence,
SM is unique.

In the following, we present an algorithm to find the
reduced minimal characterization set of a linear inequality
set.

Algorithm 5 Reduced Minimal Characterization Set Algo-
rithm
Input: Sf .
Output: The reduced minimal characterization set of Sf .
1: Apply Algorithm 3 to find the implied equality set of

Sf , denoted by Ef̄ .
2: Apply Algorithm 1 to reduce R−1(Sf )\R̃−1(Ef̄ ) by

Ef̄ to obtain Rf and Ẽ, the reduced row echelon form
of Ef̄ .

3: Apply Algorithm 4 to obtain the minimal characteriza-
tion set of R(Rf ), denoted by Sr′ .

4: return SM = Ẽ ∪ Sr′ .

By Proposition III.3 and Theorems III.3 and III.5, we
immediately obtain the following theorem.

Theorem III.6. For two equivalent inequality sets, their
reduced minimal characterization sets are same.

Note that for a pure inequality set, the minimal character-
ization set is exactly the reduced minimal characterization
set.

Remark III.3. Since the basic inequalities contain no
implied equality and hence form a pure inequality set, the el-
emental inequalities form the minimal characterization set of
the basic inequalities. In fact, for a fixed number of random
variables, Algorithm 5 can be used to compute the reduced
minimal characterization set of the basic inequalities under
the constraint of an equality set and possibly an inequality
set (used for example, for including some non-Shannon-type
inequalities).

In this sense, the definition of “(reduced) minimal char-
acterization set” (Definition III.9, Definition III.10) can be
seen as a generalization of the “minimal characterization”
discussed in [1], [12].

Remark III.4. There are many works which have stud-
ied the reduction of polyhedral computation, such as the
classical works [21], [22] and the standard methods [23],
[24]. Both our approach and the known methods focus on
the removal of redundant inequalities in a given set of
inequalities (polyhedron), and aim to find a minimal non-
redundant set. However, our method is different from the
known methods.

On the one hand, the known methods are developed for
general LP problems, but we give algorithms specifically
for homogeneous LP problems, so that the special algebraic
structure (homogeneity and sparsity) of this type of informa-
tion inequality problems can be better exploited. As a result,
our method can in fact outperform the existing methods for
such problems. See Section VI.

On the other hand, since there are typically very few
implied equalities for non-homogeneous LP problems, the
known methods pay more attention to the removal of redun-
dant inequalities but ignore the implied equalities, so that in
general only part of the redundancy in the orginal LP prob-
lem is removed. However, in homogeneous LP problems (in
particular for proving information inequalities or identities),
there are usually many implied equalities, and our methods
can take full advantage of this property. First, we compute
the implied equalities to reduce the number of variables in
the LP. Then we remove the redundant inequalities to reduce
the number of inequality constraints, so that we can remove
all the redundancy in the original problem and finally obtain
the minimal non-redundant set which is shown to be unique.
See Algorithms 1 to 5.

Our methods can also be applied to non-homogeneous LP
problems. However, since there are typically very few implied
equalities, it may not be worth the extra computation to find
them.

IV. PROCEDURES FOR PROVING INFORMATION
INEQUALITIES AND IDENTITIES

In this section, we present two procedures for proving
information inequalities and identities under the constraint
of an inequality set and/or an equality set. They are designed
in the spirit of Theorem II.2.
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A. Procedure I: Proving Information Inequalities
Input:
Objective information inequality: F̄ ≥ 0.
Additional constraints: C̄i = 0, i = 1, . . . , r1; C̄j ≥ 0, j =
r1 + 1, . . . , r2.
Element information inequalities: C̄k ≥ 0, k = r2 +
1, . . . , r3.
// Here, F̄ , C̄i, C̄j , and C̄k are linear combination of
information measures.
Output: A proof of F̄ ≥ 0 if feasible.

Step 1. Transform F̄ , C̄i, C̄j and C̄k to linear polyno-
mials F , Ci, Cj and Ck in the joint entropies respectively.
// We need to solve
// Problem P1: Determine whether F ≥ 0 is implied by

Ci = 0, i = 1, . . . , r1,
Cj ≥ 0, j = r1 + 1, . . . , r2,
Ck ≥ 0, k = r2 + 1, . . . , r3.

Step 2. Apply Algorithm 1 to reduce {Cl, l ∈ Nr3\Nr1}
by {Cl = 0, l ∈ Nr1} to obtain the reduced row echelon
form

of {Cl, l ∈ Nr1}, denoted by B, and the remainder set,
denoted by C1 = {gi, i ∈ Nr}.

Step 3. Apply Algorithm 5 to obtain the reduced minimal
characterization set of R(C1), denoted by

SM = Ẽ ∪ Sr′ . Write Sr′ = {Cj ≥ 0, j ∈ Nt2}.
Step 4. Let G = R̃−1(Ẽ) ∪ B and compute the reduced

row echelon form of G, denoted by B = {Ci, i ∈ Nt1}.
Step 5. Reduce F by R̃(B) to obtain the remainder F1.

// In the above, the inequality set R(C1) is generated by
reducing {Cl ≥ 0, l ∈ Nr3\Nr1} by B, and the inequality
// set Sr′ is generated by further reducing R(C1) by its
own implied equalities, given by Ẽ. On the other hand,
// the set B is generated by computing the reduced row
echelon form of R̃−1(Ẽ) ∪ B, and F1 is generated by
reducing F
// by R̃(B). Therefore, only the free variables in the reduced
row echelon form B are involved in F1 and Sr′ .
// The original Problem P1 is now transformed into
// Problem P2: Determine whether F1 ≥ 0 is implied by
the inequalities in Sr′ , i.e.,

Ci ≥ 0, j = 1, . . . , t2.

// Since the equality set R̃(B) contains only constraints on
the pivot variables in B, it is ignored in formulation of
// Problem P2. The remaining steps follow Algorithm 4.

Step 6. Determine whether F1 is a conic combination
of {Ci, i ∈ Nt2} by Algorithm 2. If Algorithm 2 outputs
‘TRUE’, then the objective information inequality F̄ ≥ 0 is
proved. Otherwise, declare ‘Not Provable’.

One can solve this problem by ITIP after obtaining Prob-
lem P2. In order to solve Problem P2, its dual problem

will be considered. Now rewrite Problem P2 in matrix form
by letting F1 = cTx and (C1,C2, · · · ,Ct2)

T = Ax. Then
Problem P2 can be rewritten as

minimize cTx
subject to Ax ≥ 0

(14)

such that the optimal value is nonnegative. The dual problem
is
Problem P2D:

maximize 0
subject to −ATλ+ c = 0

λ ≥ 0.
(15)

Solving Problem P2D can be considerably easier than
solving Problem P2, though the former may contain more
variables. See the application example in Section VI.

Once the objective inequality has been processed by
Procedure I (either the objective inequality is a Shannon-type
inequality or it is not), the LP in Problem P3 in Algorithm
2 is already solved. Let Nv(P1) , Nv(P2) , Nv(P2D) and
Nv(P3) be the number of variables in Problems P1, P2,
P2D and P3 respectively. Let Nc(P1), Nc(P2), Nc(P2D)
and Nc(P3) be the number of constraints in Problems P1,
P2, P2D and P3 respectively. It is clear that Nv(P1) ≥
Nv(P2), Nc(P1) ≥ Nc(P2), Nv(P2D) ≥ Nv(P3) and
Nc(P2D) ≥ Nc(P3). The reduction of the number of
variables and the number of constraints is in general sig-
nificant. Since most of the computation in the procedure
is attributed to solving the LP in Problem P3, compared
with the approach using Theorem II.2 where a much larger
LP needs to be solved, the efficiency can be significantly
improved. Moreover, with our approach, an analytical proof
can be generated automatically. Example V.1 will illustrate
this point.

B. Procedure II: Proving Information Identities
Input:
Objective information identity: F̄ = 0.
Additional constraints: C̄i = 0, i = 1, . . . , r1; C̄j ≥ 0, j =
r1 + 1, . . . , r2.
Element information inequalities: C̄k ≥ 0, k = r2 +
1, . . . , r3.
// Here, F̄ , C̄i, C̄j , and C̄k are linear combinations of
information measures.
Output: A proof of F̄ = 0 if feasible.

Step 1. Transform F̄ , C̄i, C̄j and C̄k to linear polyno-
mials F , Ci, Cj and Ck in the joint entropies respectively.
// We need to solve
// Problem P4: Determine whether F = 0 is implied by

Ci = 0, i = 1, . . . , r1,
Cj ≥ 0, j = r1 + 1, . . . , r2,
Ck ≥ 0, k = r2 + 1, . . . , r3.

Step 2. Apply Algorithm 1 to reduce {Cl, l ∈ Nr3\Nr1}
by {Cl = 0, l ∈ Nr1} to obtain the reduced row echelon
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form
of {Cl, l ∈ Nr1}, denoted by B, and the remainder set,

denoted by C1 = {gi, i ∈ Nr}.
Step 3. Apply Algorithm 5 to obtain the reduced minimal

characterization set of R(C1), denoted by
SM = Ẽ ∪ Sr′ .

Step 4. Let G = R̃−1(Ẽ) ∪ B and compute the reduced
row echelon form of G, denoted by B = {Ci, i ∈ Nt1}.
// The original problem P4 has been transformed into
// Problem P5: Determine whether F = 0 is implied by
R̃(B).

Step 5. Reduce F by R̃(B) to obtain remainder F1. If
F1 ≡ 0, then the objective identity F̄ = 0 is proved.

Otherwise, declare ‘Not Provable’.

Justification. Steps 1 to 5 are exactly the same as Pro-
cedure I. We only need to justify Step 6. As explained
in Procedure I, F1 involves only the free variables in the
reduced row echelon form B. We now prove by contradiction
that if F1 ̸≡ 0, the free variables can be chosen such that
F1 is evaluated to a nonzero value. Assume F1 ̸≡ 0 and that
for any free variables satisfying Sr′ , F1 is evaluated to zero.
Then F1 = 0 is implied by Sr′ . By Theorem III.1, Sr′ is
not a pure inequality set, which is a contradiction because
Sr′ is a pure inequality set by construction.

Remark IV.1. An information identity F = 0 is equivalent
to the two information inequalities F ≥ 0 and F ≤ 0. In the
previous approach, in order to prove F = 0, F ≥ 0 and F ≤
0 are proved separately by solving two LPs. In Procedure II,
we transform the proof into a Gauss elimination problem,
which greatly reduces the computational complexity.

Remark IV.2. Procedures I and II can be implemented on
the computer by Maple for symbolic computation. Therefore,
they can give explicit proofs of information inequalities and
identities.

V. ILLUSTRATIVE EXAMPLES

In this section, we give two examples to illustrate Pro-
cedures I and II. The computation is performed by Maple.
To simplify notations, we use h1,2,3,4 to represent the joint
entropy H(X1, X2, X3, X4), so on and so forth.

A. Information Inequality under Equality Constraints

Example V.1. I(Xi;X4) = 0, i = 1, 2, 3 and
H(X4|Xi, Xj) = 0, 1 ≤ i < j ≤ 3 ⇒ H(Xi) ≥ H(X4).

Proof. By symmetry of the problem, we only need to
prove H(X1) ≥ H(X4). The proof is given according to
Procedure I.
Input:
Objective information inequality:
F̄ = H(X1)−H(X4) ≥ 0.

Equality Constraints: C̄1 = I(X1;X4) = 0,
C̄2 = I(X2;X4) = 0, C̄3 = I(X3;X4) = 0,
C̄4 = H(X4|X1, X2) = 0, C̄5 = H(X4|X1, X3) = 0,
C̄6 = H(X4|X2, X3) = 0.
28 element information inequalities: C̄k ≥ 0, k ∈ N34\N6.

Step 1. We have F = h1 − h4, C1 = h1 + h4 − h1,4,
C2 = h2+h4−h2,4, C3 = h3+h4−h3,4, C4 = h1,2,4−h1,2,
C5 = h1,3,4 − h1,3, C6 = h2,3,4 − h2,3, and 28 linear
polynomials Ck, k ∈ N34\N6 are obtained from the 28
element information inequalities.

Step 2. Fix the variable order h1,2,3,4 ≺ h2,3,4 ≺ h1,3,4 ≺
h1,2,4 ≺ h1,2,3 ≺ h3,4 ≺ h2,4 ≺ h2,3 ≺ h1,4 ≺ h1,3 ≺
h1,2 ≺ h4 ≺ h3 ≺ h2 ≺ h1. Compute the reduced row
echelon form of {Ci, i ∈ N6}, B = {−h2,3+h2,3,4,−h1,3+
h1,3,4,−h1,2+h1,2,4,−h3−h4+h3,4,−h2−h4+h2,4,−h1−
h4 + h1,4}. Use Algorithm 1 to reduce {Cl, l ∈ N34\N6}
by R̃(B) to obtain the remainder set C1 = {gi, i ∈ N18}.

Step 3. Use Algorithm 5 to obtain SM = Ẽ ∪ Sr′ and
Sr′ = {Ci, i = 1, . . . , 10}, where

C1 = h4,
C2 = h1 + h2 − h1,2,
C3 = h1 + h3 − h1,3,
C4 = h2 + h3 − h2,3,
C5 = −h1 − h4 + h1,2 + h1,3 − h1,2,3,
C6 = −h2 − h4 + h1,2 + h2,3 − h1,2,3,
C7 = −h3 − h4 + h1,3 + h2,3 − h1,2,3,
C8 = −h1,2 + h1,2,3,
C9 = −h1,3 + h1,2,3,
C10 = −h2,3 + h1,2,3.

Step 4. Compute the reduced row echelon form B =
{−h1,2,3 + h1,2,3,4,−h2,3 + h2,3,4,−h1,3 + h1,3,4,−h1,2 +
h1,2,4,−h3−h4+h3,4,−h2−h4+h2,4,−h1−h4+h1,4}.

Step 5. Reduce F by R̃(B) to obatain F1 = h1 − h4.
Step 6. In Algorithm 2, we have m = 10, n = 8,

S̄P = { 1
2p1, p1, 1+

1
2p1, 1+

1
2p1−p3,−1+ 1

2p1+p3, 1−p3}
and SP = S̄P ∪{1, 0}. Solve the LP in Problem P3 to com-
plete the proof. Alternatively, we can solve the inequality
set R(S̄P ) to obtain the solution {p1 ≥ 2 − 2p3, p3 ≤ 1}.
Substituting p1 = 0 and p3 = 1 to {pi = Pi, i ∈ N10}
yields {p1 = 0, p2 = 0, p3 = 1, p4 = 0, p5 = 0, p6 =
0, p7 = 1, p8 = 0, p9 = 0, p10 = 1}. Thus an explicit proof
is given by F1 = C3 + C7 + C10 ≥ 0.

Table I shows the advantage of Procedure I for this
example by comparing it with the Direct LP method induced
by Theorem II.2 and with ITIP. Note that in both ITIP and
Procedure I, the number of variables is first reduced by the
equality constraints before solving the LP. However, in ITIP,
the number of inequality constraints is not reduced.

B. Information Identity under Equality Constraints

Example V.2. I(X1;X2|X3) = 0, H(X3) = I(X2;X3|X1)
⇒ H(X1) = H(X1|X2, X3).
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TABLE I

Number of variables Number of equality constraints Number of Inequality constraints
Direct LP method 15 6 28

ITIP 7 0 28
LP in Problem P3 2 0 6

Proof. The proof is given according to Procedure II.
Input:
Objective information identity:
F̄ = H(X1)−H(X1|X2, X3) = 0.
Equality Constraints: C̄1 = I(X1;X2|X3) = 0,
C̄2 = H(X3)− I(X2;X3|X1) = 0.
9 element information inequalities: C̄k ≥ 0, k ∈ N11\N2.

Step 1. We have F = h1 + h2,3 − h1,2,3, C1 = h1,3 +
h2,3 − h1,2,3 − h3, C2 = h1 + h3 + h1,2,3 − h1,2 − h1,3,
C3 = h1,2,3 − h2,3, C4 = h1,2,3 − h1,3, C5 = h1,2,3 − h1,2,
C6 = h1 + h2 − h1,2, C7 = h1,3 + h2,3 − h1,2,3 − h3,
C8 = h1 + h3 − h1,3, C9 = h1,2 + h2,3 − h1,2,3 − h2,
C10 = h2 + h3 − h2,3 and C11 = h1,2 + h1,3 − h1,2,3 − h1.

Step 2. Fix the variable order h1,2,3 ≺ h2,3 ≺ h1,3 ≺
h1,2 ≺ h3 ≺ h2 ≺ h1. Compute the reduced row echelon
form B = {h1+h3−h1,2−h1,3+h1,2,3, h1−h1,2+h2,3}.
Use Algorithm 1 to reduce {Cl, l ∈ N11\N2} by R̃(B) to
obtain the remainder set C1 = {gi, i ∈ N8}, where g1 =
−h3+h1,3, g2 = −h1−h3+h1,2, g3 = −h1−h3+h1,3, g4 =
h1+h2−h1,2, g5 = h1+h3−h1,3, g6 = −h2+h3+h1,2−
h1,3, g7 = h1 + h2 + h3 − h1,2, g8 = h3.

Step 3. Use Algorithm 5 to obtain SM = Ẽ ∪ Sr′ , where
Ẽ = {h1 + h3 − h1,3 = 0, h1 + h2 − h1,2 = 0}.

Step 4. Compute the Gauss-Jordon normal form B =
{−h1 − h2 + h1,2,3,−h2 + h2,3,−h1 − h3 + h1,3,−h1 −
h2 + h1,2}.

Step 5. Reduce F by B to obtain F1 ≡ 0. Thus the
information identity is proved.

VI. AN APPLICATION

The framework of regenerating codes, introduced in the
seminal work of Dimakis et al. [16], addresses the funda-
mental tradeoff between the storage and repair bandwidth
in erasure-coded distributed storage systems. In Tian [17],
a new outer bound on the rate region for (4, 3, 3) exact-
repair regenerating codes was obtained. This outer bound
was proved by means of a computational approach built
upon the LP framework in [1] for proving Shannon-type
inequalities. The LP that needs to be solved, however,
is exceedingly large. In order to make the computation
manageable, Tian took advantage of the symmetry of the
problem and other problem-specific structures to reduce the
numbers of variables and constraints in the LP. This outer
bound not only can provide a complete characterization of

the rate region, but also proves the existence of a non-
vanishing gap between the optimal tradeoff of the exact-
repair codes and that of the functional-repair codes for the
parameter set (4, 3, 3).2 It was the first time that a non-
trivial information theory problem was solved using this LP
framework.

In this section, we apply the results in the previous sec-
tions to Tian’s problem and significantly reduce the required
computation for solving the LP. We first give the abstract
formulation of the problem.

Definition VI.1. A permutation π on the set N4 is a
one-to-one mapping π: N4 → N4. The collection of all
permutations is denoted as

∏
.

In the problem formulation, we consider the 16 random
variables grouped into the following two sets:

W = {W1,W2,W3,W4},
S = {S1,2, S1,3, S1,4, S2,1, S2,3, S2,4, S3,1, S3,2, S3,4,

S4,1, S4,2, S4,3}.

A permutation π on N4 is applied to map one random
variable to another random variable. For example, the permu-
tation π(1, 2, 3, 4) = (2, 3, 1, 4) maps the random variable
W1 to W2. Similarly it maps the random variable Si,j to
Sπ(i),π(j). When π is applied to a set of random variables,
the permutation is applied to every random variable in the
set. For example for the aforementioned permutation π, we
have π(W1, S2,3) = (W2, S3,1).

The original problem is
Problem P6: Prove

4α+ 6β ≥ 3B (16)

under the constraints
C1 H(π(A), π(B)) = H(A,B), for any sets A ⊆ S and

B ⊆ W and any permutation π ∈
∏

,
C2 H(W ∪ S|A) = 0, any A ⊆ W : |A| = 3,
C3 H(Si,j |Wi) = 0, j ∈ N4, i ∈ N4\{j},
C4 H(Wj |{Si,j ∈ S : i ∈ Nn\{j}}) = 0, for any j ∈ N4,
C5 H(W ∪ S) = B,
C6 H(A) = B, for any A such that |A ∩W| ≥ 3,
C7 H(Wi) ≤ α, Wi ∈ W ,
C8 H(Si,j) ≤ β, Si,j ∈ S.

2It was subsequently proved analytically by Sasidharan et al. [18] that
the same holds for every parameter set.
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Tian showed in Section III-B of [17] that it is not
necessary to use all the 16 random variables for solving
Problem P6, i.e., only a subset of the random variables in
W ∪ S is needed. This idea for reducing the problem also
is used in [19], [20].

According to Tian’s proof in Section III-B of [17], Prob-
lem P6 can be reduced to the following simpler problem,
Problem P7: Prove

4α+ 6β ≥ 3B (17)

under the constraints: C1, C3, C4, C6, C7 and C8 on the 12
random variables in the set

W1 ∪ S1 = {W1,W2,W4} ∪ {S2,1, S3,1, S4,1, S1,2, S3,2,
S4,2, S1,4, S2,4, S3,4}.

Remark VI.1. In the following computation, in order
to simplify the notation, we will use, for example,
h1,2,3,4,5,6,7,8,9,10,11,12 to represent the joint entropy
H(W1,W2,W4, S2,1, S3,1, S4,1, S1,2, S3,2, S4,2, S1,4, S2,4, S3,4).
Similarly, we will use h1 to represent H(W1), h2,5 to
represent H(W2, S3,1), so on and so forth.

We now give the proof of Problem P7 according to
Procedure I.

Input:
Objective information inequality: F = 4α+ 6β − 3B ≥ 0.
Equality Constraints: C1, C3, C4 and C6 (total 22945
equalities).
Inequality Constraints: C7 and C8 (total 12 inequalities);
the element information inequalities generated by random
variables W1 ∪ S1 (total 67596 inequalities).

Step 1. The variable vector generated on W1 ∪ S1 has
212 − 1 elements (joint entropies).

Step 2. According to conditions C1, C3, C4 and C6,
write equality constraints in joint entropy forms: Ci =
0, i ∈ N22945. According to conditions C7, C8 and element
information inequalities, write inequality constraints in joint
entropy forms: Ci, i ∈ N90553\N22945.

Step 3. Compute the reduced row echelon form of {Ci, i ∈
N22945} and denote it by B. Then use Algorithm 1 to reduce
{Ci, i ∈ N90553\N22945} by R̃(B) to obtain the remainder
set C1 = {gi, i ∈ N62981}.

Step 4. Use Algorithm 4 to obtain SM = Ẽ ∪ Sr′ , and
Sr′ = {Ci, i ∈ N649}. Here we list the formulas used below
and omit the others.

C1 = 2h5 − h9,12, C2 = 2h8,10,12 − h7,8,10,12 − h8,10,
C3 = 2h2,3,8,9,10,11,12 − h2,3,5,6,7,8,10 − h3,4,7,9,10,11,12,
C4 = 2h2,3,8,9,10,11,12 − h6,7,8,9,10,11,12 − h2,3,8,10,11,
C5 = h9,12 + h8,10 − h8,10,11 − h5,
C6 = h3,8,9 + h8,9,10,12 − h3,5,7,9 − h8,11,12,
C7 = h3,9,12 + h3,8,9 − h3,8,9,10 − h3,9,
C8 = h8,11,12 + h8,10,11 − h8,9,10,12 − h11,12,
C9 = h1,5,10,12 + h3,8,9,10 − h2,3,8,9,10,11,12 − h3,9,12,
C10 = h2,3,11,12 + h3,5,7,9,10,12 − h2,3,8,11,12 − h3,5,6,7,9,10,
C11 = h3,5,7,9 + h3,5,8,9 − h2,3,5,6,7,8,10 − h3,8,9,
C12 = h3,5,8,9 + h6,7,8,10,12 − h3,5,8,9,10 − h7,8,10,12,
C13 = h2,3,8,11,12 + h3,5,7,9,10,11,12 − h2,3,8,9,10,11,12

−h3,5,7,9,10,12,
C14 = h3,5,8,9,10 + h5,6,8,9,10,11 − h3,5,8,9,10,11 − h6,7,8,10,12,
C15 = h3,8,9,11,12 + h3,5,6,7,9,10 − h3,5,7,9,10,11 − h1,5,10,12,
C16 = h8,9,10,11,12 + h3,5,7,9,10,11 − h3,5,7,9,10,11,12

−h3,8,9,11,12,
C17 = h2,3,6,9,10,12 + h2,3,8,10,11 − h2,3,8,9,10,11,12 − h2,3,11,12,
C18 = h2,3,6,9,10,12 + h3,4,7,9,10,11,12 − h2,3,8,9,10,11,12

−h8,9,10,11,12,
C19 = h6,7,8,9,10,11,12 + h3,5,8,9,10,11 − h2,3,5,6,7,8,10

−h5,6,8,9,10,11,
C20 = 2h5 − h11,12, C21 = 2h3,8,9 − h2,3,6,9,10,12 − h3,9,
C22 = h3,9 + h8,11,12 − h3,8,9 − h8,12,
C23 = h11,12 + h8,12 − h8,11,12 − h5,
C24 = h3,8,9 + h7,8,10,12 − h3,5,8,9 − h8,10,12,
C25 = α− h3,9, C26 = β − h5.

(18)
Step 5. Compute the Gauss-Jordan form B = {Ti, i ∈

N3997}.
Step 6. Reduce F by R̃(B) to obtain F1 = 4α + 6β −

3h2,3,5,6,7,8,10.
In Problem P2, we have t2 = 649 and 101 variables.
Step 7. In Algorithm 2, we have m = 649, n = 101. Let

S̄P be the polynomial set obtained in Algorithm 2. Then we
have SP = S̄P ∪ {4, 6}. Solve the LP in Problem P3 to
complete the proof. An explicit proof is given by

F ≥ F1 =

26∑
i=1

piCi ≥ 0, (19)

where pj = 1, j ∈ N19, and p20 = 6, p21 = 2, p22 =
7, p23 = 7, p24 = 2, p25 = 4, p26 = 6.

Table II shows the advantage of Procedure I for Tian’s
problem by comparing it with the Direct LP method induced
by Theorem II.2, ITIP and Tian’s method in [17].

We have obtained the LP in Problem P2 by applying
Procedure I with Problem P7 as the input. Note that we
do not have to simplify the LP by taking advantage of the
symmetry of the problem and the problem-specific structures
as in Tian’s method; this is taken care of automatically by
Procedure I. From the above table, we see that the LP in
Problem P2 is much simpler than the original LP, the LP
solved in ITIP and the LP solved in Tian’s method.
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TABLE II

Number of variables Number of equality constraints Number of Inequality constraints
Direct LP method 4098 22945 67608

ITIP 600 0 67608
Tian’s Method 176 0 6152

LP in Problem P2 101 0 649
LP in Problem P2D 649 101 649
LP in Problem P3 548 0 647

To obtain an explicit proof, we need to solve the LP in
Problem P3 which has 548 variables and 647 inequal-
ity constraints (these 647 inequality constraints contain 99
polynomial inequalities and the non-negativity of the 548
variables). If we only need to verify the inequality without
yielding an explicit proof, then we only need to solve the
LP in Problem P2.

It turns out that for this particular problem, solving the
LP in Problem P3 is much simpler than solving the LP
in Problem P2. Specifically, we used 20.0 seconds for
solving the LP in Problem P2 but only 2.2 seconds for
solving the LP in Problem P3 by MAPLE running on a
desktop PC with an i7-6700 Core, 3.40GHz CPU and 16G
memory. However, there is no guarantee that this is always
the case.

VII. DISCUSSION AND CONCLUSION

In this paper, we develop a new method to prove linear
information inequalities and identities. Instead of solving an
LP, we transform the problem into a polynomial reduction
problem. For the proof of information inequalities, compared
with existing methods (ITIP and its variations), our method
takes advantage of the algebraic structure of the problem
and greatly reduces the computational complexity. For the
proof of information identities, we give a simple direct
proof method which is much more efficient than the existing
methods.

Note that although our method provides an analytic proof
for information inequalities/identities, the proof may not be
intuitive because the final LP problems to be solved, though
equivalent to the original LP problem, are in a different
form. One way to obtain a more intuitive proof is to identify
which of the original variables (i.e., the joint entropies) are
eliminated and which of the original constraints are invoked
in the process of obtaining the result. In principle this can be
done, but the proof thus obtained would in general be much
longer than the proof provided by our method. Nevertheless,
this can be a direction for future research.

Our method can split a very large LP problem into several
smaller ones that are easier to solve. With this approach, one
may be able to solve certain large LP problems which are
not solvable otherwise. However, a question worth asking is

under what condition our methods are more efficient than
solving the original LP problem directly, because it takes
computation to split the large LP problem into smaller ones.
While we do not have a definite answer, we remark that in
general the more constraints there are in the problem, the
more efficient our method is.

There are usually many constraints in information theory
problems. If there are only very few constraints, it may be
more efficient to solve the original LP problem directly. In
the extreme case that there is no constraint and no additional
inequalities in the problem, since the set of elemental
inequalities is already minimal, applying our method would
have no benefit at all.

In this paper, we only give the theoretical framework for
the methods introduced. The actual implementation of these
methods may involve the use of various existing computa-
tional software. For different parts of the methods, either
symbolic computation or numerical computation can be
employed. For symbolic computation, one can use software
such as MATHEMATICA and MAPLE. For the part on
numerical computation, one can consider CPLEX, GUROBI,
etc. Symbolic computation has the advantage of being free
of numerical errors and can provide an analytical proof, but
it is computationally less efficient. We are in the process
of developing a fully automated information inequality and
identity prover, which will be reported in the near future.
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